Lecture Notes, January 15, 2009

The Arrow-Debreu Model of General Competitive Equilibrium

3.1 The Market, Commodities and Prices

N commodities
$\mathrm{x}=\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \ldots, \mathrm{x}_{\mathrm{N}}\right) \in \mathbf{R}^{\mathrm{N}}$, a commodity bundle
The market takes place at a single instant, prior to the rest of economic activity. commodity = good or service completely specified

> description
location date (of delivery)

A futures market: no reopening of trade.
Price system : $p=\left(p_{1}, p_{2}, \ldots, p_{N}\right) \neq 0$.
$\mathrm{p}_{\mathrm{i}} \geq 0$ for all $\mathrm{i}=1, \ldots, \mathrm{~N}$.
Value of a bundle $x \in R^{N}$ at prices p is $p \cdot x$.

4.1 Firms and Production Technology

$$
F, j \in F, j=1, \ldots, \# F .
$$

Production technology: $\mathcal{Y}^{\mathrm{j}} \subset \mathrm{R}^{\mathrm{N}} . \boldsymbol{y} \in \mathcal{Y}^{\mathrm{j}}$ (the script Y notation is to emphasize that \mathcal{Y}^{j} is bounded).
Negative co-ordinates of y are inputs; positive co-ordinates are outputs. $y \in \mathcal{Y}^{j}, y=(-2,-3,0,0,1)$

This is a more general specification than a production function. The relationship is $\mathrm{f}^{\mathrm{j}}(\mathrm{x}) \equiv \max \left\{\mathrm{w} \mid(-\mathrm{x}, \mathrm{w}) \in \mathcal{Y}^{\mathrm{j}}\right\}$.

4.2 The Form of Production Technology

P.II. $\quad 0 \in \mathcal{Y}^{j}$.
P.III. $\quad \mathcal{Y}^{j}$ is closed. (continuity)
P.VI $\quad \mathcal{Y}^{j}$ is a bounded set for each $j \in$ F. (We'll dispense with this evenutally)

P.III and P.VI $\Rightarrow \mathcal{Y}^{j}$ is compact

Compactness of \mathscr{Y}^{j} is needed to be sure that profit maximization is well-defined, but P.VI is an ugly assumption: boundedness of a firm's attainable production possibilities should be communicated by the price system --- not by assumption. Chapter 8 of Starr's book weakens the assumption by showing that --- even when the firm's technology set is unbounded --- under weak assumptions, the set of attainable plans is bounded. Then circumscribe the unbounded technology set by a ball strictly containing the attainable plans. Apply the analysis of chaps. 4-7 to the artificially circumscribed production technology --- there will be an equilibrium (theorem 7.1) and an equilibrium is necessarily attainable, so the circumscibing ball is not a binding constraint in equilibrium. Then delete the artificial circumscribing ball; the prices and allocation remain an equilibrium. Conclusion: P.VI can be eliminated but it's a complex pain to do so.

4. 3. Strictly Convex Production Technology

P.V. For each $j \in \mathrm{~F}, \mathcal{Y}^{j}$ is strictly convex.

Convexity implies no scale economies, no indivisibilities.
$\mathrm{p} \in R_{+}^{N}, \mathrm{p}=\left(\mathrm{p}_{1}, \mathrm{p}_{2}, \ldots, \mathrm{p}_{\mathrm{N}}\right), \mathrm{p} \neq 0$.

$$
\widetilde{S}^{j}(p) \equiv\left\{y^{* j} \mid y^{* j} \in \mathcal{Y}^{\mathrm{j}}, \quad p \cdot y^{* j} \geq p \cdot y \text { for all } \quad \mathrm{y} \in \mathcal{Y}^{\mathrm{j}}\right\} .
$$

Theorem 4.1: Assume P.II, P.III, P.V, and P.VI. Let $p \in R_{+}^{N}, p \neq 0$. Then $\widetilde{S}^{j}(p)$ is a well defined continuous point-valued function.

Proof:

Well defined: $\widetilde{S}^{j}(p)=$ maximizer of a continuous real-valued function on a compact set.
Point-valued: Strict convexity of \mathscr{Y}^{j}, P.V. Point valued-ness implies that $\widetilde{S}^{j}(p)$ is a function.
Continuity: Let $p^{v} \in R_{+}^{N} ; v=1,2, \ldots ; p^{v} \neq 0, p^{v} \rightarrow p^{o} \neq 0$. Show $\widetilde{S}^{j}\left(p^{v}\right) \rightarrow \widetilde{S}^{j}\left(p^{o}\right)$.

Note: this is a consequence of the Maximum Theorem (see Berge, Topological Spaces), but we can provide a direct proof here, by contradiction. Suppose not. Then there is a cluster point of the sequence $\widetilde{S}^{j}\left(p^{v}\right)$, y^{*} so that $\mathrm{y}^{*} \neq \widetilde{S}\left(p^{o}\right)$ and $p^{0} \cdot \widetilde{S}^{j}\left(p^{o}\right)>p^{0} \cdot y^{*}$ (why does this inequality hold? by definition of $\left.\widetilde{S}^{j}\left(p^{o}\right)\right)$. That is there is a subsequence p^{v} so that $\widetilde{S}^{j}\left(p^{v}\right) \rightarrow y^{*}$. Note that $p^{v} \cdot \widetilde{S}^{j}\left(p^{o}\right) \rightarrow p^{o} \cdot \widetilde{S}^{j}\left(p^{o}\right)$. We have $p^{v} \cdot \widetilde{S}^{j}\left(p^{v}\right) \rightarrow p^{o} \cdot y^{*}$ and $p^{o} \cdot \widetilde{S}^{j}\left(p^{o}\right)>p^{o} \cdot y^{*}$. But the dot product is a continuous function of its arguments, so for v large, $p^{v} \cdot \widetilde{S}^{j}\left(p^{o}\right)>p^{v} \cdot \widetilde{S}^{j}\left(p^{v}\right)$, a contradiction. Hence $\widetilde{S}^{j}\left(p^{v}\right) \rightarrow \widetilde{S}^{j}\left(p^{o}\right)$. Q.E.D.

Lemma 1: (homogeneity of degree 0) Assume P.II, P.III, and P.VI. Let $\lambda>0, p \in R_{+}^{N}$. Then $\widetilde{S}^{\mathrm{j}}(\lambda \mathrm{p})=\widetilde{S}^{\mathrm{j}}(\mathrm{p})$.
$\widetilde{S}(p) \equiv \sum_{j \in F} \widetilde{S}^{j}(p)$

4.4 Attainable Production Plans

Definition: A sum of sets \mathscr{Y}^{j} in R^{N}, is defined as $\mathscr{Y}=\sum_{j} \mathcal{Y}^{j}$ is the set
$\left\{y \mid y=\sum_{j} y^{j}\right.$ for some $\left.y^{j} \in \mathcal{Y}^{j}\right\}$.
Aggregate technology set:
$\mathcal{Y} \equiv \sum_{j \in F} \mathcal{Y}^{j}$.
Initial inputs to production $r \in \mathrm{R}^{\mathrm{N}}$
Definition: Let $y \in \mathscr{Y}$. Then y is said to be attainable if $y+r \geq 0$.

$$
\mathrm{y} \in \mathscr{Y} \text { is attainable if }(\mathrm{y}+\mathrm{r}) \in[\mathscr{Y}+\{\mathrm{r}\}] \cap \mathrm{R}^{\mathrm{N}} .
$$

Note that under this definition, and P.II, P.III, P.V, P.VI the attainable set of outputs is compact and convex.

