Lecture Notes, January 15, 2009

The Arrow-Debreu Model of General Competitive Equilibrium

3.1 The Market, Commodities and Prices

N commodities

$$\mathbf{x} = (\mathbf{x}_1, \, \mathbf{x}_2, \, \mathbf{x}_3, \, ..., \, \mathbf{x}_N) \in \mathbf{R}^N$$
, a commodity bundle

The market takes place at a single instant, prior to the rest of economic activity.

commodity = good or service completely specified

description

location

date (of delivery)

A futures market: no reopening of trade.

Price system: $p = (p_1, p_2, ..., p_N) \neq 0$.

 $p_i \ge 0$ for all i = 1, ..., N.

Value of a bundle $x \in R^N$ at prices p is p•x.

4.1 Firms and Production Technology

$$F, j \in F, j = 1, ..., #F.$$

Production technology: $\mathcal{Y}^{j} \subset \mathbb{R}^{\mathbb{N}}$. $y \in \mathcal{Y}^{j}$ (the script Y notation is to emphasize that \mathcal{U}^{j} is bounded).

Negative co-ordinates of y are inputs; positive co-ordinates are outputs.

$$y \in \mathcal{U}^{j}, y = (-2, -3, 0, 0, 1)$$

This is a more general specification than a production function. The relationship is $f^{j}(x) = \max\{ w \mid (-x, w) \in \mathcal{Y}^{j} \}.$

4.2 The Form of Production Technology

P.II. $0 \in \mathcal{U}^{j}$.

P.III. \mathcal{Y}^{j} is closed. (continuity)

P.VI \mathcal{Y}^{j} is a bounded set for each $j \in F$. (We'll dispense with this evenutally)

P.III and P.VI $\Rightarrow \mathcal{U}^{j}$ is compact

Compactness of \mathcal{Y}^j is needed to be sure that profit maximization is well-defined, but P.VI is an ugly assumption: boundedness of a firm's attainable production possibilities should be communicated by the price system --- not by assumption. Chapter 8 of Starr's book weakens the assumption by showing that --- even when the firm's technology set is unbounded --- under weak assumptions, the set of attainable plans is bounded. Then circumscribe the unbounded technology set by a ball strictly containing the attainable plans. Apply the analysis of chaps. 4-7 to the artificially circumscribed production technology --- there will be an equilibrium (theorem 7.1) and an equilibrium is necessarily attainable, so the circumscibing ball is not a binding constraint in equilibrium. Then delete the artificial circumscribing ball; the prices and allocation remain an equilibrium. Conclusion: P.VI can be eliminated but it's a complex pain to do so.

4. 3. Strictly Convex Production Technology

P.V. For each $j \in F$, \mathcal{U}^j is strictly convex.

Convexity implies no scale economies, no indivisibilities.

$$p \in R_+^N$$
, $p = (p_1, p_2, ..., p_N), p \neq 0$.

$$\widetilde{S}^j(p) \equiv \{y^{*j} \mid y^{*j} \in \mathcal{Y}^j, \quad p \cdot y^{*j} \geq p \cdot y \text{ for all } y \in \mathcal{Y}^j\}.$$

Theorem 4.1: Assume P.II, P.III, P.V, and P.VI. Let $p \in R_+^N, p \neq 0$. Then $\widetilde{S}^j(p)$ is a well defined continuous point-valued function.

Proof:

<u>Well defined</u>: $\widetilde{S}^{j}(p)$ = maximizer of a continuous real-valued function on a compact set.

<u>Point-valued</u>: Strict convexity of \mathcal{Y}^j , P.V. Point valued-ness implies that $\widetilde{S}^j(p)$ is a function.

Continuity: Let $p^{\vee} \in R_+^N$; $\nu = 1, 2, ...; p^{\vee} \neq 0$, $p^{\vee} \rightarrow p^{o} \neq 0$. Show $\widetilde{S}^{j}(p^{\vee}) \rightarrow \widetilde{S}^{j}(p^{o})$.

Note: this is a consequence of the Maximum Theorem (see Berge, *Topological Spaces*), but we can provide a direct proof here, by contradiction. Suppose not. Then there is a cluster point of the sequence $\widetilde{S}^j(p^{\nu})$, y^* so that $y^* \neq \widetilde{S}(p^{o})$ and $p^{o} \cdot \widetilde{S}^j(p^{o}) > p^{o} \cdot y^*$ (why does this inequality hold? by definition of $\widetilde{S}^j(p^{o})$). That is there is a subsequence p^{ν} so that $\widetilde{S}^j(p^{\nu}) \to y^*$. Note that $p^{\nu} \cdot \widetilde{S}^j(p^{o}) \to p^{o} \cdot \widetilde{S}^j(p^{o})$. We have $p^{\nu} \cdot \widetilde{S}^j(p^{\nu}) \to p^{o} \cdot y^*$ and $p^{o} \cdot \widetilde{S}^j(p^{o}) > p^{o} \cdot y^*$. But the dot product is a continuous function of its arguments, so for ν large, $p^{\nu} \cdot \widetilde{S}^j(p^{o}) > p^{\nu} \cdot \widetilde{S}^j(p^{\nu})$, a contradiction. Hence $\widetilde{S}^j(p^{\nu}) \to \widetilde{S}^j(p^{o})$. Q.E.D.

Lemma 1: (homogeneity of degree 0) Assume P.II, P.III, and P.VI. Let $\lambda > 0$, $p \in \mathbb{R}^N_+$. Then $\widetilde{S}^j(\lambda p) = \widetilde{S}^j(p)$.

$$\widetilde{S}(p) \equiv \sum_{j \in F} \widetilde{S}^{j}(p)$$

4.4 Attainable Production Plans

Definition: A sum of sets \mathcal{Y}^{j} in $\mathbb{R}^{\mathbb{N}}$, is defined as $\mathcal{Y} = \sum_{j} \mathcal{Y}^{j}$ is the set $\{y \mid y = \sum_{i} y^{j} \text{ for some } y^{j} \in \mathcal{Y}^{j} \}.$

Aggregate technology set:

$$\mathcal{Y} \equiv \sum_{i \in F} \mathcal{Y}^{i}$$
.

Initial inputs to production $r \in \mathbb{R}^{N}$

Definition: Let $y \in \mathcal{Y}$. Then y is said to be <u>attainable</u> if $y + r \ge 0$.

 $y \in \mathcal{Y}$ is attainable if $(y+r) \in [\mathcal{Y} + \{r\}] \cap \mathbb{R}^{N}_{+}$.

Note that under this definition, and P.II, P.III, P.V, P.VI the attainable set of outputs is compact and convex.